FINAL JEE(Advanced) EXAMINATION - 2022

(Held On Sunday 28 ${ }^{\text {th }}$ AUGUST, 2022)

PAPER-1
 TEST PAPER WIIH SOLUTION

MATHEMATICS

SECTION-1 : (Maximum Marks : 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the correct numerical value is entered;
Zero Marks : 0 In all other cases.

1. Considering only the principal values of the inverse trigonometric functions, the value of

$$
\frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi}
$$

is \qquad .

Ans. (2.35 or 2.36)
Sol. $\cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}=\tan ^{-1} \frac{\pi}{\sqrt{2}}$

$\sin ^{-1}\left(\frac{2 \sqrt{2} \pi}{2+\pi^{2}}\right)=\sin ^{-1}\left(\frac{2 \times \frac{\pi}{\sqrt{2}}}{1+\left(\frac{\pi}{\sqrt{2}}\right)^{2}}\right)$
$=\pi-2 \tan ^{-1}\left(\frac{\pi}{\sqrt{2}}\right)$
$\left(\right.$ As, $\left.\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)=\pi-2 \tan ^{-1} \mathrm{x}, \mathrm{x} \geq 1\right)$
and $\tan ^{-1} \frac{\sqrt{2}}{\pi}=\cot ^{-1}\left(\frac{\pi}{\sqrt{2}}\right)$
\therefore Expression $=\frac{3}{2}\left(\tan ^{-1} \frac{\pi}{\sqrt{2}}\right)+\frac{1}{4}\left(\pi-2 \tan ^{-1} \frac{\pi}{\sqrt{2}}\right)+\cot ^{-1}\left(\frac{\pi}{\sqrt{2}}\right)$
$=\left(\frac{3}{2}-\frac{2}{4}\right) \tan ^{-1} \frac{\pi}{\sqrt{2}}+\frac{\pi}{4}+\cot ^{-1} \frac{\pi}{\sqrt{2}}$
$=\left(\tan ^{-1} \frac{\pi}{\sqrt{2}}+\cot ^{-1} \frac{\pi}{\sqrt{2}}\right)+\frac{\pi}{4}$
$=\frac{\pi}{2}+\frac{\pi}{4}=\frac{3 \pi}{4}$
$=2.35$ or 2.36
2. Let α be a positive real number. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{g}:(\alpha, \infty) \rightarrow \mathbb{R}$ be the functions defined by

$$
f(\mathrm{x})=\sin \left(\frac{\pi \mathrm{x}}{12}\right) \text { and } \mathrm{g}(\mathrm{x})=\frac{2 \log _{\mathrm{e}}(\sqrt{\mathrm{x}}-\sqrt{\alpha})}{\log _{\mathrm{e}}\left(\mathrm{e}^{\sqrt{\mathrm{x}}}-\mathrm{e}^{\sqrt{\alpha}}\right)}
$$

Then the value of $\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}} f(\mathrm{~g}(\mathrm{x}))$ is \qquad .

Ans. (0.50)
Sol. $\lim _{x \rightarrow a^{+}} \frac{2 \ln (\sqrt{\mathrm{x}}-\sqrt{\alpha})}{\ln \left(\mathrm{e}^{\sqrt{x}}-\mathrm{e}^{\sqrt{\alpha}}\right)}\left(\frac{0}{0}\right.$ form $)$
\therefore Using Lopital rule,

$$
\begin{aligned}
& =2 \lim _{x \rightarrow a^{+}} \frac{\left(\frac{1}{\sqrt{\mathrm{x}}-\sqrt{\alpha}}\right) \cdot \frac{1}{2 \sqrt{\mathrm{x}}}}{\left(\frac{1}{\left.\mathrm{e}^{\sqrt{x}}-\mathrm{e}^{\sqrt{\alpha}}\right) \cdot \mathrm{e}^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{\mathrm{x}}}}\right.} \\
& =\frac{2}{\mathrm{e}^{\sqrt{\alpha}}} \lim _{x \rightarrow a^{+}} \frac{\left(\mathrm{e}^{\sqrt{x}}-\mathrm{e}^{\sqrt{\alpha}}\right)}{(\sqrt{\mathrm{x}}-\sqrt{\alpha})}\left(\frac{0}{0}\right) \\
& =\frac{2}{\mathrm{e}^{\sqrt{\alpha}}} \lim _{x \rightarrow a^{+}} \frac{\left(\mathrm{e}^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{\mathrm{x}}}-0\right)}{\left(\frac{1}{2 \sqrt{\mathrm{x}}}-0\right)}=2
\end{aligned}
$$

so, $\lim _{x \rightarrow a^{+}} f(g(x))=\lim _{x \rightarrow a^{+}} f(2)$
$=f(2)=\sin \frac{\pi}{6}=\frac{1}{2}$
$=0.50$
3. In a study about a pandemic, data of 900 persons was collected. It was found that 190 persons had symptom of fever, 220 persons had symptom of cough, 220 persons had symptom of breathing problem, 330 persons had symptom of fever or cough or both, 350 persons had symptom of cough or breathing problem or both, 340 persons had symptom of fever or breathing problem or both, 30 persons had all three symptoms (fever, cough and breathing problem).

If a person is chosen randomly from these 900 persons, then the probability that the person has at most one symptom is \qquad .
Ans. (0.80)
Sol. $n(U)=900$
Let $\mathrm{A} \equiv$ Fever, $\mathrm{B} \equiv$ Cough
$\mathrm{C} \equiv$ Breathing problem
$\therefore \mathrm{n}(\mathrm{A})=190, \mathrm{n}(\mathrm{B})=220, \mathrm{n}(\mathrm{C})=220$
$\mathrm{n}(\mathrm{A} \cup \mathrm{B})=330, \mathrm{n}(\mathrm{B} \cup \mathrm{C})=350$,
$\mathrm{n}(\mathrm{A} \cup \mathrm{C})=340, \mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=30$
Now $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$\Rightarrow 330=190+220-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{n}(\mathrm{A} \cap \mathrm{B})=80$
Similarly,
$350=220+220-\mathrm{n}(\mathrm{B} \cap \mathrm{C})$
$\Rightarrow \mathrm{n}(\mathrm{B} \cap \mathrm{C})=90$
and $340=190+220-\mathrm{n}(\mathrm{A} \cap \mathrm{C})$
$\Rightarrow \mathrm{n}(\mathrm{A} \cap \mathrm{C})=70$
$\therefore \mathrm{n}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=(190+220+220)-(80+90+70)+30$
$=660-240=420$
\Rightarrow Number of person without any symptom
$=\mathrm{n}(\cup)-\mathrm{n}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
$=900-420=480$
Now, number of person suffering from exactly one symptom
$=(\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})+\mathrm{n}(\mathrm{C}))-2(\mathrm{n}(\mathrm{A} \cap \mathrm{B})+\mathrm{n}(\mathrm{B} \cap \mathrm{C})+\mathrm{n}(\mathrm{C} \cap \mathrm{A}))+3 \mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
$=(190+220+220)-2(80+90+70)+3(30)$
$=630-480+90=240$
\therefore Number of person suffering from atmost one symotom
$=480+240=720$
\Rightarrow Probability $=\frac{720}{900}=\frac{8}{10}=\frac{4}{5}=0.80$
4. Let z be a complex number with non-zero imaginary part. If

$$
\frac{2+3 z+4 z^{2}}{2-3 z+4 z^{2}}
$$

is a real number, then the value of $|z|^{2}$ is \qquad .

Ans. (0.50)
Sol. Given that
$\mathrm{z} \neq \overline{\mathrm{z}}$
Let $\alpha=\frac{2+3 z+4 z^{2}}{2-3 z+4 z^{2}}=\frac{\left(2-3 z+4 z^{2}\right)+6 z}{2-3 z+4 z^{2}}$
$\therefore \alpha=1+\frac{6 z}{2-3 z+4 z^{2}}$
If α is a real number, then
$\alpha=\bar{\alpha}$
$\Rightarrow \frac{\mathrm{z}}{2-3 \mathrm{z}+4 \mathrm{z}^{2}}=\frac{\overline{\mathrm{z}}}{2-3 \overline{\mathrm{z}}+4 \overline{\mathrm{z}}^{2}}$
$\therefore 2(\mathrm{z}-\overline{\mathrm{z}})=4 \mathrm{z} \overline{\mathrm{z}}(\mathrm{z}-\overline{\mathrm{z}})$
$\Rightarrow(\mathrm{z}-\overline{\mathrm{z}})(2-4 \mathrm{z} \overline{\mathrm{z}})=0$
As $\mathrm{z} \neq \overline{\mathrm{z}}$ (Given)
$\Rightarrow \mathrm{z} \overline{\mathrm{Z}}=\frac{2}{4}=\frac{1}{2}$
$\Rightarrow|\mathrm{z}|^{2}=0.50$
5. Let \bar{z} denote the complex conjugate of a complex number z and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$$
\bar{z}-z^{2}=\left(\bar{z}+z^{2}\right)
$$

is \qquad .

Ans. (4.00)
Sol. Given,
$\overline{\mathrm{z}}-\mathrm{z}^{2}=i\left(\overline{\mathrm{z}}+\mathrm{z}^{2}\right)$
$\Rightarrow(1-i) \overline{\mathrm{z}}=(1+i) \mathrm{z}^{2}$
$\Rightarrow \frac{(1-i)}{(1+i)} \overline{\mathrm{z}}=\mathrm{z}^{2}$
$\Rightarrow\left(-\frac{2 i}{2}\right) \overline{\mathrm{z}}=\mathrm{z}^{2}$
$\therefore \mathrm{z}^{2}=-i \overline{\mathrm{z}}$
Let $\mathrm{z}=\mathrm{x}+i \mathrm{y}$,
$\therefore\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)+i(2 \mathrm{xy})=-i(\mathrm{x}-i \mathrm{y})$
so, $x^{2}-y^{2}+y=0$
and $(2 y+1) x=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{y}=-\frac{1}{2}$
Case I: When $\mathrm{x}=0$
$\therefore(1) \Rightarrow y(1-y)=0 \Rightarrow y=0,1$
$\therefore(0,0),(0,1)$
Case II : When $\mathrm{y}=-\frac{1}{2}$
$\therefore(1) \Rightarrow \mathrm{x}^{2}-\frac{1}{4}-\frac{1}{2}=0 \Rightarrow \mathrm{x}^{2}=\frac{3}{4} \Rightarrow \mathrm{x}= \pm \frac{\sqrt{3}}{2}$
$\therefore\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right),\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
\Rightarrow Number of distinct ' z ' is equal to 4 .
6. Let $l_{1}, l_{2}, \ldots, l_{100}$ be consecutive terms of an arithmetic progression with common difference d_{1}, and let $w_{1}, w_{2}, \ldots, w_{100}$ be consecutive terms of another arithmetic progression with common difference d_{2}, where $d_{1} d_{2}=10$. For each $i=1,2, \ldots, 100$, let R_{i} be a rectangle with length l_{i}, width w_{i} and area A_{i}. If $A_{51}-A_{50}=1000$, then the value of $A_{100}-A_{90}$ is \qquad .

Ans. (18900.00)
Sol. Given
$\mathrm{A}_{51}-\mathrm{A}_{50}=1000 \Rightarrow \ell_{51} \mathrm{w}_{51}-\ell_{50} \mathrm{w}_{50}=1000$
$\Rightarrow\left(\ell_{1}+50 \mathrm{~d}_{1}\right)\left(\mathrm{w}_{1}+50 \mathrm{~d}_{2}\right)-\left(\ell_{1}+49 \mathrm{~d}_{1}\right)\left(\mathrm{w}_{1}+49 \mathrm{~d}_{2}\right)=1000$
$\Rightarrow\left(\ell_{1} \mathrm{~d}_{2}+\mathrm{w}_{1} \mathrm{~d}_{1}\right)=10$
(As $_{1} \mathrm{~d}_{2}=10$)
$\therefore \mathrm{A}_{100}-\mathrm{A}_{90}=\ell_{100} \mathrm{~W}_{100}-\ell_{90} \mathrm{w}_{90}$
$=\left(\ell_{1}+99 \mathrm{~d}_{1}\right)\left(\mathrm{w}_{1}+99 \mathrm{~d}_{2}\right)-\left(\ell_{1}+89 \mathrm{~d}_{1}\right)\left(\mathrm{w}_{1}+89 \mathrm{~d}_{2}\right)$
$=10\left(\ell_{1} \mathrm{~d}_{2}+\mathrm{w}_{1} \mathrm{~d}_{1}\right)+\left(99^{2}-89^{2}\right) \mathrm{d}_{1} \mathrm{~d}_{2}$
$=10(10)+\underbrace{(99-89)}_{=10}(99+89)(10)$
(As, $\mathrm{d}_{1} \mathrm{~d}_{2}=10$)
$=100(1+188)=100(189)$
$=18900$
7. The number of 4-digit integers in the closed interval [2022, 4482] formed by using the digits $0,2,3,4,6,7$ is \qquad .

Ans. (569.00)
Sol. Ans. 569
(1)

(2)

(3)

(4)

Number of 4 digit integers in [2022,4482]
$=5+24+180+216+144=569$
8. Let $A B C$ be the triangle with $A B=1, A C=3$ and $\angle B A C=\frac{\pi}{2}$. If a circle of radius $r>0$ touches the sides $A B, A C$ and also touches internally the circumcircle of the triangle $A B C$, then the value of r is \qquad .

Ans. (0.83 or 0.84)

Sol. $4-\sqrt{10}=0.83$ or 0.84

$\mathrm{C}_{1}\left(\frac{1}{2}, \frac{3}{2}\right)$ and $\mathrm{r}_{1}=\frac{\sqrt{10}}{2}$
$\mathrm{C}_{2}=(\mathrm{r}, \mathrm{r})$
\therefore circle C_{2} touches C_{1} internally
$\Rightarrow \mathrm{C}_{1} \mathrm{C}_{2}=\left|\mathrm{r}-\frac{\sqrt{10}}{2}\right|$
$\Rightarrow\left(\mathrm{r}-\frac{1}{2}\right)^{2}+\left(\mathrm{r}-\frac{3}{2}\right)^{2}=\left(\mathrm{r}-\frac{\sqrt{10}}{2}\right)^{2}$
$r^{2}-4 r+\sqrt{10} r=0$
$r=0($ reject $)$ or $r=4-\sqrt{10}$
oVERSEAS

SECTION-2 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks $:+3$ If all the four options are correct but ONLY three options are chosen;
Partial Marks $\quad:+2$ If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks $:+1$ If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -2 In all other cases.
9. Consider the equation

$$
\int_{1}^{\mathrm{e}} \frac{\left(\log _{\mathrm{e}} \mathrm{x}\right)^{1 / 2}}{\mathrm{x}\left(a-\left(\log _{\mathrm{e}} \mathrm{x}\right)^{3 / 2}\right)^{2}} \mathrm{dx}=1, \quad a \in(-\infty, 0) \cup(1, \infty) .
$$

Which of the following statements is/are TRUE ?
(A) No a satisfies the above equation
(B) An integer a satisfies the above equation
(C) An irrational number a satisfies the above equation
(D) More than one a satisfy the above equation

Ans. (C, D)
Sol. $\int_{1}^{e} \frac{\left(\log _{e} x\right)^{1 / 2}}{x\left(a-\left(\log _{e} x\right)^{3 / 2}\right)^{2}}=1$
Let $\mathrm{a}-\left(\log _{\mathrm{e}} \mathrm{x}\right)^{3 / 2}=\mathrm{t}$
$\frac{\left(\log _{\mathrm{e}} \mathrm{x}\right)^{1 / 2}}{\mathrm{x}} \mathrm{dx}=-\frac{2}{3} \mathrm{dt}$
$=\frac{2}{3} \int_{\mathrm{a}}^{\mathrm{a}-1} \frac{-\mathrm{dt}}{\mathrm{t}^{2}}=\frac{2}{3}\left(\frac{1}{\mathrm{t}}\right)_{\mathrm{a}}^{\mathrm{a}-1}=1$
$\frac{2}{3 \mathrm{a}(\mathrm{a}-1)}=1$
$3 a^{2}-3 a-2=0$
$a=\frac{3 \pm \sqrt{33}}{6}$
10. Let $a_{1}, a_{2}, a_{3}, \ldots$ be an arithmetic progression with $a_{1}=7$ and common difference 8 . Let $T_{1}, T_{2}, T_{3}, \ldots$ be such that $T_{1}=3$ and $T_{n+1}-T_{n}=a_{n}$ for $n \geq 1$. Then, which of the following is/are TRUE?
(A) $T_{20}=1604$
(B) $\sum_{\mathrm{k}=1}^{20} T_{\mathrm{k}}=10510$
(C) $T_{30}=3454$
(D) $\sum_{\mathrm{k}=1}^{30} T_{\mathrm{k}}=35610$

Ans. (B,C)
Sol. $\mathrm{a}_{1}=7, \mathrm{~d}=8$
$\mathrm{T}_{\mathrm{n}+1}-\mathrm{T}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}} \forall \mathrm{n} \geq 1$
$\mathrm{S}_{\mathrm{n}}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
$\mathrm{S}_{\mathrm{n}}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\ldots .+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
on subtraction
$\mathrm{T}_{\mathrm{n}}=\mathrm{T}_{1}+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots .+\mathrm{a}_{\mathrm{n}-1}$
$\mathrm{T}_{\mathrm{n}}=3+(\mathrm{n}-1)(4 \mathrm{n}-1)$
$\mathrm{T}_{\mathrm{n}}=4 \mathrm{n}^{2}-5 \mathrm{n}+4$
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{k}}=4 \sum \mathrm{n}^{2}-5 \sum \mathrm{n}+4 \mathrm{n}$
$\mathrm{T}_{20}=1504$
$\mathrm{T}_{30}=3454$
$\sum_{\mathrm{k}=1}^{30} \mathrm{~T}_{\mathrm{k}}=35615$
$\sum_{\mathrm{k}=1}^{20} \mathrm{~T}_{\mathrm{k}}=10510$
11. Let P_{1} and P_{2} be two planes given by

$$
\begin{aligned}
& P_{1}: 10 x+15 y+12 z-60=0, \\
& P_{2}:-2 x+5 y+4 z-20=0 .
\end{aligned}
$$

Which of the following straight lines can be an edge of some tetrahedron whose two faces lie on P_{1} and P_{2} ?
(A) $\frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{5}$
(B) $\frac{x-6}{-5}=\frac{y}{2}=\frac{z}{3}$
(C) $\frac{x}{-2}=\frac{y-4}{5}=\frac{z}{4}$
(D) $\frac{x}{1}=\frac{y-4}{-2}=\frac{z}{3}$

Ans. (A,B,D)
Sol. line of intersection is $\frac{x}{0}=\frac{y-4}{-4}=\frac{z}{5}$
(1) Any skew line with the line of intersection of given planes can be edge of tetrahedron.
(2) any intersecting line with line of intersection of given planes must lie either in plane P_{1} or P_{2} can be edge of tetrahedron.
12. Let S be the reflection of a point Q with respect to the plane given by

$$
\vec{r}=-(t+p) \hat{\mathrm{i}}+\hat{\mathrm{j}}+(1+p) \hat{\mathrm{k}}
$$

where t, p are real parameters and $\hat{\mathrm{i}}, \hat{\mathrm{j}}, \hat{\mathrm{k}}$ are the unit vectors along the three positive coordinate axes. If the position vectors of Q and S are $10 \hat{\mathrm{i}}+15 \hat{\mathrm{j}}+20 \hat{\mathrm{k}}$ and $\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}}$ respectively, then which of the following is/are TRUE ?
(A) $3(\alpha+\beta)=-101$
(B) $3(\beta+\gamma)=-71$
(C) $3(\gamma+\alpha)=-86$
(D) $3(\alpha+\beta+\gamma)=-121$

Ans. (A,B,C)

Sol. $\overrightarrow{\mathrm{r}}=\hat{\mathrm{k}}+\mathrm{t}(-\hat{\mathrm{i}}+\hat{\mathrm{j}})+\mathrm{p}(-\hat{\mathrm{i}}+\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{n}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=1$
$\mathrm{Q}(10,15,20)$ and $\mathrm{S}(\alpha, \beta, \gamma)$
$\frac{\alpha-10}{1}=\frac{\beta-15}{1}=\frac{\gamma-20}{1}=-2\left(\frac{10+15+20-1}{1+1+1}\right)$
$=-\frac{88}{3}$
$\Rightarrow(\alpha, \beta, \gamma) \equiv\left(-\frac{58}{3},-\frac{43}{3},-\frac{28}{3}\right)$
$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}$ are correct options
13. Consider the parabola $y^{2}=4 x$. Let S be the focus of the parabola. A pair of tangents drawn to the parabola from the point $P=(-2,1)$ meet the parabola at P_{1} and P_{2}. Let Q_{1} and Q_{2} be points on the lines $S P_{1}$ and $S P_{2}$ respectively such that $P Q_{1}$ is perpendicular to $S P_{1}$ and $P Q_{2}$ is perpendicular to $S P_{2}$. Then, which of the following is/are TRUE?
(A) $S Q_{I}=2$
(B) $\mathrm{Q}_{1} \mathrm{Q}_{2}=\frac{3 \sqrt{10}}{5}$
(C) $\mathrm{PQ}_{1}=3$
(D) $\mathrm{SQ}_{2}=1$

Ans. (B,C,D)

Sol. Let equation of tangent with slope ' m ' be

$\mathrm{T}: \mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$
T : passes through $(-2,1)$ so
$1=-2 m+\frac{1}{m}$
$\Rightarrow \mathrm{m}=-1$ or $\mathrm{m}=\frac{1}{2}$
Points are given by $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
So, one point will be $(1,-2) \&(4,4)$
Let $\mathrm{P}_{1}(4,4) \& \mathrm{P}_{2}(1,-2)$
$P_{1} S: 4 x-3 y-4=0$
$\mathrm{P}_{2} \mathrm{~S}: \mathrm{x}-1=0$
$\mathrm{PQ}_{1}=\left|\frac{4(-2)-3(1)-4}{5}\right|=3$
$\mathrm{SP}=\sqrt{10} ; \mathrm{PQ}_{2}=3 ; \mathrm{SQ}_{1}=1=\mathrm{SQ}_{2}$
$\frac{1}{2}\left(\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{2}\right) \times \sqrt{10}=\frac{1}{2} \times 3 \times 1 \quad$ (comparing Areas)
$\Rightarrow \mathrm{Q}_{1} \mathrm{Q}_{2}=\frac{2 \times 3}{\sqrt{10}}=\frac{3 \sqrt{10}}{5}$
14. Let $|M|$ denote the determinant of a square matrix M. Let $\mathrm{g}:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ be the function defined by

$$
\mathrm{g}(\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1}
$$

where

$$
f(\theta)=\frac{1}{2}\left|\begin{array}{ccc}
1 & \sin \theta & 1 \\
-\sin \theta & 1 & \sin \theta \\
-1 & -\sin \theta & 1
\end{array}\right|+\left|\begin{array}{ccc}
\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\
\sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{\mathrm{e}}\left(\frac{4}{\pi}\right) \\
\cot \left(\theta+\frac{\pi}{4}\right) & \log _{\mathrm{e}}\left(\frac{\pi}{4}\right) & \tan \pi
\end{array}\right| .
$$

Let (x) be a quadratic polynomial whose roots are the maximum and minimum values of the function (θ), and $(2)=2-\sqrt{2}$. Then, which of the following is/are TRUE ?
(A) $\mathrm{p}\left(\frac{3+\sqrt{2}}{4}\right)<0$
(B) $\mathrm{p}\left(\frac{1+3 \sqrt{2}}{4}\right)>0$
(C) $\mathrm{p}\left(\frac{5 \sqrt{2}-1}{4}\right)>0$
(D) $\mathrm{p}\left(\frac{5-\sqrt{2}}{4}\right)<0$

Ans. (A,C)
$\left|\begin{array}{lll}1 & \sin \theta & 1\end{array}\right|\left|\sin \pi \quad \cos \left(\theta+\frac{\pi}{4}\right) \tan \left(\theta-\frac{\pi}{4}\right)\right|$
Sol. $\mathrm{f}(\theta)=\frac{1}{2}\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|+\left|\begin{array}{ccc}\sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{\mathrm{e}}\left(\frac{4}{\pi}\right) \\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{\mathrm{e}} \frac{\pi}{4} & \tan \pi\end{array}\right|$
$f(\theta)=\frac{1}{2}\left|\begin{array}{ccc}2 & \sin \theta & 1 \\ 0 & 1 & \sin \theta \\ 0 & -\sin \theta & 1\end{array}\right|+\left|\begin{array}{ccc}0 & -\sin \left(\theta-\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & 0 & \log _{\mathrm{e}}\left(\frac{4}{\pi}\right) \\ -\tan \left(\theta-\frac{\pi}{4}\right) & -\log _{\mathrm{e}}\left(\frac{4}{\pi}\right) & 0\end{array}\right|$
$f(\theta)=\left(1+\sin ^{2} \theta\right)+0$ (skew symmetric)
$g(\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1}$
$=|\sin \theta|+|\cos \theta| \quad$ for $\theta \in\left[0, \frac{\pi}{2}\right]$
$g(\theta) \in[1, \sqrt{2}]$
Again let $\mathrm{P}(\mathrm{x})=\mathrm{k}(\mathrm{x}-\sqrt{2})(\mathrm{x}-1)$

$$
\begin{aligned}
& 2-\sqrt{2}=\mathrm{k}(2-\sqrt{2})(2-1) \\
& \Rightarrow \mathrm{k}=1 \quad(\mathrm{P}(2)=2-\sqrt{2} \text { given }) \\
& \therefore \mathrm{P}(\mathrm{x})=(\mathrm{x}-\sqrt{2})_{(\mathrm{x}-1)}
\end{aligned}
$$

for option (A) $\mathrm{P}\left(\frac{3+\sqrt{2}}{4}\right)<0$ correct
option (B) $\mathrm{P}\left(\frac{1+3 \sqrt{2}}{4}\right)<0$ incorrect
option (C) $\mathrm{P}\left(\frac{5 \sqrt{2}-1}{4}\right)>0$ correct
option (D) $\mathrm{P}\left(\frac{5-\sqrt{2}}{4}\right)>0$ incorrect

SECTION-3 : (Maximum Marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists : List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY

ONE of these four options satisfies the condition asked in the Multiple Choice Question.

- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks $\quad: 0$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $:-1$ In all other cases.
15. Consider the following lists:

List-I		List-II	
(I)	$\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$	(P)	has two elements
(II)	$\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$	(Q)	has three elements
(III)	$\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$	(R)	has four elements
(IV)	$\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$	(S)	has five elements
		(T)	has six elements

The correct option is:
(A) (I) $\rightarrow(\mathrm{P}) ;(\mathrm{II}) \rightarrow(\mathrm{S}) ;(\mathrm{III}) \rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{S})$
(B) (I) $\rightarrow(\mathrm{P}) ;(\mathrm{II}) \rightarrow(\mathrm{P}) ;(\mathrm{III}) \rightarrow(\mathrm{T}) ;(\mathrm{IV}) \rightarrow(\mathrm{R})$
(C) $(\mathrm{I}) \rightarrow(\mathrm{Q}) ;(\mathrm{II}) \rightarrow(\mathrm{P}) ;(\mathrm{III}) \rightarrow(\mathrm{T}) ;(\mathrm{IV}) \rightarrow(\mathrm{S})$
$(\mathrm{D})(\mathrm{I}) \rightarrow(\mathrm{Q}) ;(\mathrm{II}) \rightarrow(\mathrm{S}) ;(\mathrm{III}) \rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{R})$
Ans. (B)
Sol. (I) $\left\{x \in\left[\frac{-2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$
$\cos x+\sin x=1$
$\Rightarrow \frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x=\frac{1}{\sqrt{2}} \Rightarrow \cos \left(x-\frac{\pi}{4}\right)=\cos \frac{\pi}{4}$
$\Rightarrow \mathrm{x}-\frac{\pi}{4}=2 \mathrm{n} \pi \pm \frac{\pi}{4} ; \mathrm{n} \in \mathrm{Z} \quad \Rightarrow \mathrm{x}=2 \mathrm{n} \pi ; \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2} ; \mathrm{n} \in \mathrm{Z}$
$\Rightarrow x \in\left\{0, \frac{\pi}{2}\right\}$ in given range has two solutions
(II) $\left\{x \in\left[\frac{-5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$
$\sqrt{3} \tan 3 \mathrm{x}=1 \Rightarrow \tan 3 \mathrm{x}=\frac{1}{\sqrt{3}} \Rightarrow 3 \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{6}$
$\Rightarrow \mathrm{x}=(6 \mathrm{n}+1) \frac{\pi}{18} ; \mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x} \in\left\{\frac{\pi}{18}, \frac{-5 \pi}{18}\right\}$ in given range has two solutions
(III) $\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$
$2 \cos 2 x=\sqrt{3}$
$\Rightarrow \cos 2 x=\frac{\sqrt{3}}{2}=\cos \frac{\pi}{6}$
$\Rightarrow 2 \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{6} ; \mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{12} ; \mathrm{n} \in \mathrm{Z}$
$\mathrm{x} \in\left\{ \pm \frac{\pi}{12}, \pi \pm \frac{\pi}{12},-\pi \pm \frac{\pi}{12}\right\}$
Six solutions in given range
(IV) $\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$
$\cos x-\sin x=-1$
$\Rightarrow \cos \left(x+\frac{\pi}{4}\right)=\frac{-1}{\sqrt{2}}=\cos \frac{3 \pi}{4}$
$\Rightarrow \mathrm{x}+\frac{\pi}{4}=2 \mathrm{n} \pi \pm \frac{3 \pi}{4} ; \mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2}$ or $\mathrm{x}=2 \mathrm{n} \pi-\pi ; \mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x} \in\left\{\frac{\pi}{2}, \frac{-3 \pi}{2}, \pi,-\pi\right\}$ four solutions in given range
16. Two players, P_{1} and P_{2}, play a game against each other. In every round of the game, each player rolls a fair die once, where the six faces of the die have six distinct numbers. Let x and y denote the readings on the die rolled by P_{1} and P_{2}, respectively. If $x>y$, then P_{1} scores 5 points and P_{2} scores 0 point. If $x=y$, then each player scores 2 points. If $x<y$, then P_{1} scores 0 point and P_{2} scores 5 points. Let X_{i} and Y_{i} be the total scores of P_{1} and P_{2}, respectively, after playing the $i^{\text {th }}$ round.

List-I		List-II	
(I)	Probability of $\left(X_{2} \geq Y_{2}\right)$ is	(P)	$\frac{3}{8}$
(II)	Probability of $\left(X_{2}>Y_{2}\right)$ is	(Q)	$\frac{11}{16}$
(III)	Probability of $\left(X_{3}=Y_{3}\right)$ is	(R)	$\frac{5}{16}$
(IV)	Probability of $\left(X_{3}>Y_{3}\right)$ is	(S)	$\frac{355}{864}$
		(T)	$\frac{77}{432}$

The correct option is:
(A) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (T); (IV) \rightarrow (S)
(B) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (T); (IV) \rightarrow (T)
(C) (I) \rightarrow (P); (II) \rightarrow (R); (III) \rightarrow (Q); (IV) \rightarrow (S)
(D) (I) \rightarrow (P); (II) \rightarrow (R); (III) \rightarrow (Q); (IV) \rightarrow (T)

Ans. (A)
Sol. $\mathrm{P}($ draw in 1 round $)=\frac{6}{36}=\frac{1}{6}$
$\mathrm{P}($ win in 1 round $)=\frac{1}{2}\left(1-\frac{1}{6}\right)=\frac{5}{12}$
$\mathrm{P}($ loss in 1 round $)=\frac{5}{12}$
$\mathrm{P}\left(\mathrm{X}_{2}>\mathrm{Y}_{2}\right)=\mathrm{P}(10,0)+\mathrm{P}(7,2)=\frac{5}{12} \times \frac{5}{12}+\frac{5}{12} \times \frac{1}{6} \times 2=\frac{45}{144}=\frac{5}{16}$
$\mathrm{P}\left(\mathrm{X}_{2}=\mathrm{Y}_{2}\right)=\mathrm{P}(5,5)+\mathrm{P}(4,4)=\frac{5}{12} \times \frac{5}{12} \times 2+\frac{1}{6} \times \frac{1}{6}=\frac{25+2}{72}=\frac{3}{8}$
$\mathrm{P}\left(\mathrm{X}_{3}=\mathrm{Y}_{3}\right)=\mathrm{P}(6,6)+\mathrm{P}(7,7)=\frac{1}{6 \times 6 \times 6}+\frac{5}{12} \times \frac{1}{6} \times \frac{5}{12} \times 6=\frac{2}{432}+\frac{75}{432}=\frac{77}{432}$
$\mathrm{P}\left(\mathrm{X}_{3}>\mathrm{Y}_{3}\right)=\frac{1}{2}\left(1-\frac{77}{432}\right)=\frac{355}{864}$
17. Let p, q, r be nonzero real numbers that are, respectively, the $10^{\text {th }}, 100^{\text {th }}$ and $1000^{\text {th }}$ terms of a harmonic progression. Consider the system of linear equations

$$
\begin{gathered}
x+y+z=1 \\
10 x+100 y+1000 z=0 \\
q r x+p r y+p q z=0 .
\end{gathered}
$$

List-I		List-II	
(I)	If $\frac{q}{r}=10$, then the system of linear equations has	(P)	$x=0, y=\frac{10}{9}, z=-\frac{1}{9}$ as a solution
(II)	If $\frac{p}{r} \neq 100$, then the system of linear equations has	(Q)	$x=\frac{10}{9}, y=-\frac{1}{9}, z=0$ as a solution
(III)	If $\frac{p}{q} \neq 10$, then the system of linear equations has	(R)	infinitely many solutions
(IV)	If $\frac{p}{q}=10$, then the system of linear equations has	(S)	no solution
		(T)	at least one solution

The correct option is:
(A) (I) \rightarrow (T); (II) \rightarrow (R); (III) \rightarrow (S); (IV) \rightarrow (T)
(B) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (S); (IV) \rightarrow (R)
(C) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (P); (IV) \rightarrow (R)
(D) (I) \rightarrow (T); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (T)

Ans. (B)

Sol. If $\frac{\mathrm{q}}{\mathrm{r}}=10 \Rightarrow \mathrm{~A}=\mathrm{D} \Rightarrow \mathrm{D}_{\mathrm{x}}=\mathrm{D}_{\mathrm{y}}=\mathrm{D}_{\mathrm{z}}=0$
So, there are infinitely many solutions
Look of infinitely many solutions can be given as
$x+y+z=1$
$\& 10 x+100 y+1000 z=0 \Rightarrow x+10 y+100 z=0$
Let $\mathrm{z}=\lambda$
then $x+y=1-\lambda$
and $x+10 y=-100 \lambda$
$\Rightarrow \mathrm{x}=\frac{10}{9}+10 \lambda ; \mathrm{y}=\frac{-1}{9}-11 \lambda$
i.e., $(x, y, z) \equiv\left(\frac{10}{9}+10 \lambda, \frac{-1}{9}-11 \lambda, \lambda\right)$
$\mathrm{Q}\left(\frac{10}{9}, \frac{-1}{9}, 0\right)$ valid for $\lambda=0$
$\mathrm{P}\left(0, \frac{10}{9}, \frac{-1}{9}\right)$ not valid for any λ.
(I) $\rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{T}$
(II) If $\frac{\mathrm{p}}{\mathrm{r}} \neq 100$, then $\mathrm{D}_{\mathrm{y}} \neq 0$

So no solution
(II) \rightarrow (S)
(III) If $\frac{p}{q} \neq 10$, then $D_{z} \neq 0$ so, no solution
(III) \rightarrow (S)
(IV) If $\frac{\mathrm{p}}{\mathrm{q}}=10 \Rightarrow \mathrm{D}_{\mathrm{z}}=0 \Rightarrow \mathrm{D}_{\mathrm{x}}=\mathrm{D}_{\mathrm{y}}=0$
so infinitely many solution
(IV) $\rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{T}$
18. Consider the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1 .
$$

Let $(\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through H parallel to the y-axis crosses the ellipse and its auxiliary circle at points E and F respectively, in the first quadrant. The tangent to the ellipse at the point E intersects the positive x-axis at a point G. Suppose the straight line joining F and the origin makes an angle ϕ with the positive x-axis.

List-I		List-II	
(I)	If $\phi=\frac{\pi}{4}$ triangle $F G H$ is	(P)	$\frac{(\sqrt{3}-1)^{4}}{8}$
(II)	If $\phi=\frac{\pi}{3}$ triangle $F G H$, then the area of the the	(Q)	1
(III)	If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is	(R)	$\frac{3}{4}$
(IV)	If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is	(S)	$\frac{1}{2 \sqrt{3}}$
		(T)	$\frac{3 \sqrt{3}}{2}$

The correct option is:
(A) (I) \rightarrow (R); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) $\rightarrow(\mathrm{P})$
(B) (I) \rightarrow (R); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)
(C) $(\mathrm{I}) \rightarrow(\mathrm{Q}) ;(\mathrm{II}) \rightarrow(\mathrm{T}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$
(D) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) $\rightarrow(\mathrm{P})$

Ans. (C)

Sol. Let $\mathrm{F}(2 \cos \phi, 2 \sin \phi)$
$\& \mathrm{E}(2 \cos \phi, \sqrt{3} \sin \phi)$
EG : $\frac{\mathrm{x}}{2} \cos \phi+\frac{\mathrm{y}}{\sqrt{3}} \sin \phi=1$
$\therefore \mathrm{G}\left(\frac{2}{\cos \phi}, 0\right)$ and $\alpha=2 \cos \phi$
$\operatorname{ar}(\Delta \mathrm{FGH})=\frac{1}{2} \mathrm{HG} \times \mathrm{FH}$

$=\frac{1}{2}\left(\frac{2}{\cos \phi}-2 \cos \phi\right) \times 2 \sin \phi$
$\mathrm{f}(\phi)=2 \tan \phi \sin ^{2} \phi$
\therefore (I) $\mathrm{f}\left(\frac{\pi}{4}\right)=1 \quad$ (II) $\mathrm{f}\left(\frac{\pi}{3}\right)=\frac{3 \sqrt{3}}{2} \quad$ (III) $\mathrm{f}\left(\frac{\pi}{6}\right)=\frac{1}{2 \sqrt{3}}$
(IV) $\mathrm{f}\left(\frac{\pi}{12}\right)=2(2-\sqrt{3})\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2}=(4-2 \sqrt{3}) \frac{(\sqrt{3}-1)^{2}}{8}=\frac{(\sqrt{3}-1)^{4}}{8}$
$\therefore(\mathrm{I}) \rightarrow(\mathrm{Q}) ;(\mathrm{II}) \rightarrow(\mathrm{T}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$

