

FINAL JEE(Advanced) EXAMINATION - 2022

(Held On Sunday 28th AUGUST, 2022)

PAPER-1

TEST PAPER WITH SOLUTION

MATHEMATICS

SECTION-1: (Maximum Marks: 24)

- This section contains **EIGHT (08)** questions.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 **ONLY** if the correct numerical value is entered;

Zero Marks : 0 In all other cases.

1. Considering only the principal values of the inverse trigonometric functions, the value of

$$\frac{3}{2}\cos^{-1}\sqrt{\frac{2}{2+\pi^2}} + \frac{1}{4}\sin^{-1}\frac{2\sqrt{2}\pi}{2+\pi^2} + \tan^{-1}\frac{\sqrt{2}\pi}{\pi}$$

is _____

Ans. (2.35 or 2.36)

Sol.
$$\cos^{-1}\sqrt{\frac{2}{2+\pi^2}} = \tan^{-1}\frac{\pi}{\sqrt{2}}$$

$$\sin^{-1}\left(\frac{2\sqrt{2}\pi}{2+\pi^2}\right) = \sin^{-1}\left(\frac{2\times\frac{\pi}{\sqrt{2}}}{1+\left(\frac{\pi}{\sqrt{2}}\right)^2}\right)$$

$$= \pi - 2 \tan^{-1} \left(\frac{\pi}{\sqrt{2}} \right)$$

$$\left(\text{As, } \sin^{-1} \left(\frac{2x}{1+x^2} \right) = \pi - 2 \tan^{-1} x, x \ge 1 \right)$$

and
$$\tan^{-1} \frac{\sqrt{2}}{\pi} = \cot^{-1} \left(\frac{\pi}{\sqrt{2}} \right)$$

$$\therefore \text{ Expression } = \frac{3}{2} \left(\tan^{-1} \frac{\pi}{\sqrt{2}} \right) + \frac{1}{4} \left(\pi - 2 \tan^{-1} \frac{\pi}{\sqrt{2}} \right) + \cot^{-1} \left(\frac{\pi}{\sqrt{2}} \right)$$

$$= \left(\frac{3}{2} - \frac{2}{4} \right) \tan^{-1} \frac{\pi}{\sqrt{2}} + \frac{\pi}{4} + \cot^{-1} \frac{\pi}{\sqrt{2}}$$

$$= \left(\tan^{-1} \frac{\pi}{\sqrt{2}} + \cot^{-1} \frac{\pi}{\sqrt{2}} \right) + \frac{\pi}{4}$$

$$= \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$= 2.35 \text{ or } 2.36$$

2. Let α be a positive real number. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: (\alpha, \infty) \to \mathbb{R}$ be the functions defined by

$$f(x) = \sin\left(\frac{\pi x}{12}\right)$$
 and $g(x) = \frac{2\log_e\left(\sqrt{x} - \sqrt{\alpha}\right)}{\log_e\left(e^{\sqrt{x}} - e^{\sqrt{\alpha}}\right)}$.

Then the value of $\lim_{x\to a^+} f(g(x))$ is _____.

Sol.
$$\lim_{x \to a^{+}} \frac{2\ell n \left(\sqrt{x} - \sqrt{\alpha}\right)}{\ell n \left(e^{\sqrt{x}} - e^{\sqrt{\alpha}}\right)} \quad \left(\frac{0}{0} \text{ form}\right)$$

:. Using Lopital rule,

$$= 2 \lim_{x \to a^{+}} \frac{\left(\frac{1}{\sqrt{x} - \sqrt{\alpha}}\right) \cdot \frac{1}{2\sqrt{x}}}{\left(\frac{1}{e^{\sqrt{x}} - e^{\sqrt{\alpha}}}\right) \cdot e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}}$$

$$= \frac{2}{e^{\sqrt{\alpha}}} \lim_{x \to a^{+}} \frac{\left(e^{\sqrt{x}} - e^{\sqrt{\alpha}}\right)}{\left(\sqrt{x} - \sqrt{\alpha}\right)} \quad \left(\frac{0}{0}\right)$$

$$= \frac{2}{e^{\sqrt{\alpha}}} \lim_{x \to a^{+}} \frac{\left(e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} - 0\right)}{\left(\frac{1}{2\sqrt{x}} - 0\right)} = 2$$
so,
$$\lim_{x \to a^{+}} f\left(g(x)\right) = \lim_{x \to a^{+}} f\left(2\right)$$

$$= f\left(2\right) = \sin\frac{\pi}{6} = \frac{1}{2}$$

$$= 0.50$$

- 3. In a study about a pandemic, data of 900 persons was collected. It was found that
 - 190 persons had symptom of fever,
 - 220 persons had symptom of cough,
 - 220 persons had symptom of breathing problem,
 - 330 persons had symptom of fever or cough or both,
 - 350 persons had symptom of cough or breathing problem or both,
 - 340 persons had symptom of fever or breathing problem or both,
 - 30 persons had all three symptoms (fever, cough and breathing problem).

If a person is chosen randomly from these 900 persons, then the probability that the person has at most one symptom is

Ans. (0.80)

Sol.
$$n(U) = 900$$

Let
$$A \equiv Fever$$
, $B \equiv Cough$

 $C \equiv Breathing problem$

$$\therefore$$
 n(A) = 190, n(B) = 220, n(C) = 220

$$n(A \cup B) = 330, n(B \cup C) = 350,$$

$$n(A \cup C) = 340, n (A \cap B \cap C) = 30$$

Now
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$\Rightarrow$$
 330 = 190 + 220 - n(A \cap B)

$$\Rightarrow$$
 n(A \cap B) = 80

Similarly,

$$350 = 220 + 220 - n(B \cap C)$$

$$\Rightarrow$$
 n(B \cap C) = 90

and
$$340 = 190 + 220 - n(A \cap C)$$

$$\Rightarrow$$
 n(A \cap C) = 70

$$\therefore$$
 n(A \cup B \cup C) = (190 + 220 + 220) - (80 + 90 + 70) + 30

$$=660-240=420$$

⇒ Number of person without any symptom

$$= n (\cup) - n(A \cup B \cup C)$$

$$= 900 - 420 = 480$$

Now, number of person suffering from exactly one symptom

$$= (n(A) + n(B) + n(C)) - 2(n(A \cap B) + n(B \cap C) + n(C \cap A)) + 3n(A \cap B \cap C)$$

$$=(190+220+220)-2(80+90+70)+3(30)$$

$$=630-480+90=240$$

... Number of person suffering from atmost one symotom

$$=480 + 240 = 720$$

$$\Rightarrow$$
 Probability = $\frac{720}{900} = \frac{8}{10} = \frac{4}{5} = 0.80$

4. Let z be a complex number with non-zero imaginary part. If

$$\frac{2+3z+4z^2}{2-3z+4z^2}$$

is a real number, then the value of $|z|^2$ is _____.

Ans. (0.50)

Sol. Given that

$$z \neq \overline{z}$$

Let
$$\alpha = \frac{2+3z+4z^2}{2-3z+4z^2} = \frac{(2-3z+4z^2)+6z}{2-3z+4z^2}$$

$$\therefore \alpha = 1 + \frac{6z}{2 - 3z + 4z^2}$$

If α is a real number, then

$$\alpha = \overline{\alpha}$$

$$\Rightarrow \frac{z}{2 - 3z + 4z^2} = \frac{\overline{z}}{2 - 3\overline{z} + 4\overline{z}^2}$$

$$\therefore 2(z-\overline{z}) = 4z\overline{z}(z-\overline{z})$$

$$\Rightarrow (z - \overline{z})(2 - 4z\overline{z}) = 0$$

As $z \neq \overline{z}$ (Given)

$$\Rightarrow z\overline{z} = \frac{2}{4} = \frac{1}{2}$$

$$\Rightarrow |\mathbf{z}|^2 = 0.50$$

5. Let \bar{z} denote the complex conjugate of a complex number z and let $i = \sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$$\bar{z}-z^2=(\bar{z}+z^2)$$

is .

Ans. (4.00)

Sol. Given,

$$\overline{z} - z^2 = i(\overline{z} + z^2)$$

$$\Rightarrow (1-i)\overline{z} = (1+i)z^2$$

$$\Rightarrow \frac{(1-i)}{(1+i)}\overline{z} = z^2$$

$$\Rightarrow \left(-\frac{2i}{2}\right)\overline{z} = z^2$$

$$\therefore z^2 = -i \overline{z}$$

Let
$$z = x + iy$$
,

$$(x^2 - y^2) + i(2xy) = -i(x - iy)$$

so,
$$x^2 - y^2 + y = 0$$
 ...(1)

and
$$(2y + 1)x = 0$$
 ...(2)

$$\Rightarrow$$
 x = 0 or y = $-\frac{1}{2}$

Case I: When x = 0

$$\therefore$$
 (1) \Rightarrow y(1 - y) = 0 \Rightarrow y = 0,1

Case II: When $y = -\frac{1}{2}$

$$\therefore (1) \Rightarrow x^2 - \frac{1}{4} - \frac{1}{2} = 0 \Rightarrow x^2 = \frac{3}{4} \Rightarrow x = \pm \frac{\sqrt{3}}{2}$$

$$\therefore \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right), \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

 \Rightarrow Number of distinct 'z' is equal to 4.

6. Let $l_1, l_2,..., l_{100}$ be consecutive terms of an arithmetic progression with common difference d_1 , and let $w_1, w_2,..., w_{100}$ be consecutive terms of another arithmetic progression with common difference d_2 , where $d_1d_2 = 10$. For each i = 1, 2,...,100, let R_i be a rectangle with length l_i , width w_i and area A_i . If $A_{51} - A_{50} = 1000$, then the value of $A_{100} - A_{90}$ is _______.

Ans. (18900.00)

Sol. Given

$$\begin{split} A_{51} - A_{50} &= 1000 \Rightarrow \ell_{51} w_{51} - \ell_{50} w_{50} = 1000 \\ \Rightarrow (\ell_1 + 50 d_1) (w_1 + 50 d_2) - (\ell_1 + 49 d_1) (w_1 + 49 d_2) = 1000 \\ \Rightarrow (\ell_1 d_2 + w_1 d_1) &= 10 \\ (As \ d_1 d_2 = 10) \\ \therefore A_{100} - A_{90} &= \ell_{100} w_{100} - \ell_{90} w_{90} \\ &= (\ell_1 + 99 d_1) (w_1 + 99 d_2) - (\ell_1 + 89 d_1) (w_1 + 89 d_2) \\ &= 10 (\ell_1 d_2 + w_1 d_1) + (99^2 - 89^2) d_1 d_2 \\ &= 10 (10) + \underbrace{(99 - 89)}_{=10} (99 + 89) (10) \end{split}$$

$$(As, d_1d_2 = 10)$$

= 100 (1 + 188) = 100 (189)
= 18900

7. The number of 4-digit integers in the closed interval [2022, 4482] formed by using the digits 0, 2, 3, 4, 6, 7 is ______.

Ans. (569.00)

Sol. Ans. 569

$$(1) \quad \boxed{2} \quad \boxed{0} \quad \boxed{2} \quad \boxed{\overset{2,3,}{\underset{4,6,7}{(4,6,7)}}} \longrightarrow 5$$

$$(2) \quad \boxed{2} \quad 0 \quad \stackrel{3,4,}{\stackrel{6,7}{\stackrel{}{\circ}}} \longrightarrow 24$$

$$(3) \quad \boxed{2} \quad \begin{array}{|c|c|} \hline 2,3,4 \\ \hline \downarrow & \downarrow & \downarrow \\ \hline 5, & 6, & 6 \end{array} \longrightarrow 180$$

Number of 4 digit integers in [2022,4482]

$$= 5 + 24 + 180 + 216 + 144 = 569$$

8. Let ABC be the triangle with AB = 1, AC = 3 and $\angle BAC = \frac{\pi}{2}$. If a circle of radius r > 0 touches the sides AB, AC and also touches internally the circumcircle of the triangle ABC, then the value of r is

Ans. (0.83 or 0.84)

Sol.
$$4 - \sqrt{10} = 0.83$$
 or 0.84

$$C_1\left(\frac{1}{2}, \frac{3}{2}\right)$$
 and $r_1 = \frac{\sqrt{10}}{2}$

$$C_2 = (r,r)$$

 \therefore circle C_2 touches C_1 internally

$$\Rightarrow C_1 C_2 = \left| r - \frac{\sqrt{10}}{2} \right|$$

$$\Rightarrow \left(r - \frac{1}{2}\right)^2 + \left(r - \frac{3}{2}\right)^2 = \left(r - \frac{\sqrt{10}}{2}\right)^2$$

$$r^2 - 4r + \sqrt{10}r = 0$$

$$r = 0$$
 (reject) or $r = 4 - \sqrt{10}$

SECTION-2: (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct:

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

9. Consider the equation

$$\int_{1}^{e} \frac{(\log_{e} x)^{1/2}}{x \left(a - (\log_{e} x)^{3/2}\right)^{2}} dx = 1, \quad a \in (-\infty, 0) \cup (1, \infty).$$

Which of the following statements is/are TRUE?

- (A) **No** a satisfies the above equation
- (B) An integer a satisfies the above equation
- (C) An irrational number a satisfies the above equation
- (D) More than one a satisfy the above equation

Ans. (C, D)

Sol.
$$\int_{1}^{e} \frac{\left(\log_{e} x\right)^{1/2}}{x\left(a - \left(\log_{e} x\right)^{3/2}\right)^{2}} = 1$$
Let $a - \left(\log_{e} x\right)^{3/2} = t$

$$\frac{\left(\log_{e} x\right)^{1/2}}{x} dx = -\frac{2}{3} dt$$

$$= \frac{2}{3} \int_{a}^{a-1} \frac{-dt}{t^{2}} = \frac{2}{3} \left(\frac{1}{t}\right)_{a}^{a-1} = 1$$

$$\frac{2}{3a(a-1)} = 1$$

$$3a^{2} - 3a - 2 = 0$$

$$a = \frac{3 \pm \sqrt{33}}{6}$$

- 10. Let $a_1, a_2, a_3,...$ be an arithmetic progression with $a_1 = 7$ and common difference 8. Let $T_1, T_2, T_3,...$ be such that $T_1 = 3$ and $T_{n+1} T_n = a_n$ for $n \ge 1$. Then, which of the following is/are TRUE?
 - (A) $T_{20} = 1604$

(B)
$$\sum_{k=1}^{20} T_k = 10510$$

(C)
$$T_{30} = 3454$$

(D)
$$\sum_{k=1}^{30} T_k = 35610$$

Ans. (B,C)

Sol.
$$a_1 = 7$$
, $d = 8$

$$T_{n+1} - T_n = a_n \forall n \ge 1$$

$$S_n = T_1 + T_2 + T_3 + ... + T_{n-1} + T_n$$

$$S_n = T_1 + T_2 + T_3 + + T_{n-1} + T_n$$

on subtraction

$$T_n = T_1 + a_1 + a_2 + \ldots + a_{n-1}$$

$$T_n = 3 + (n-1)(4n-1)$$

$$T_n = 4n^2 - 5n + 4$$

$$\sum_{k=1}^{n} T_k = 4 \sum n^2 - 5 \sum n + 4n$$

$$T_{20} = 1504$$

$$T_{30} = 3454$$

$$\sum_{k=1}^{30} T_k = 35615$$

$$\sum_{k=1}^{20} T_k = 10510$$

11. Let P_1 and P_2 be two planes given by

$$P_1$$
: $10x + 15y + 12z - 60 = 0$,

$$P_2: -2x + 5y + 4z - 20 = 0.$$

Which of the following straight lines can be an edge of some tetrahedron whose two faces lie on P_1 and P_2 ?

(A)
$$\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{5}$$

(B)
$$\frac{x-6}{-5} = \frac{y}{2} = \frac{z}{3}$$

(C)
$$\frac{x}{-2} = \frac{y-4}{5} = \frac{z}{4}$$

(D)
$$\frac{x}{1} = \frac{y-4}{-2} = \frac{z}{3}$$

Ans. (A,B,D)

Sol. line of intersection is
$$\frac{x}{0} = \frac{y-4}{-4} = \frac{z}{5}$$

- (1) Any skew line with the line of intersection of given planes can be edge of tetrahedron.
- (2) any intersecting line with line of intersection of given planes must lie either in plane P_1 or P_2 can be edge of tetrahedron.
- 12. Let S be the reflection of a point Q with respect to the plane given by

$$\vec{r} = -(t+p)\hat{i} + t\hat{j} + (1+p)\hat{k}$$

where t, p are real parameters and \hat{i} , \hat{j} , \hat{k} are the unit vectors along the three positive coordinate axes. If the position vectors of Q and S are $10\hat{i}+15\hat{j}+20\hat{k}$ and $\alpha\hat{i}+\beta\hat{j}+\gamma\hat{k}$ respectively, then which of the following is/are TRUE?

(A)
$$3(\alpha + \beta) = -101$$

(B)
$$3(\beta + \gamma) = -71$$

(C)
$$3(\gamma + \alpha) = -86$$

(D)
$$3(\alpha + \beta + \gamma) = -121$$

Ans. (A,B,C)

Sol.
$$\vec{r} = \hat{k} + t(-\hat{i} + \hat{j}) + p(-\hat{i} + \hat{k})$$

$$\vec{n} = \hat{i} + \hat{j} + \hat{k}$$

$$\Rightarrow$$
 x + y + z = 1

Q(10,15,20) and $S(\alpha,\beta,\gamma)$

$$\frac{\alpha - 10}{1} = \frac{\beta - 15}{1} = \frac{\gamma - 20}{1} = -2\left(\frac{10 + 15 + 20 - 1}{1 + 1 + 1}\right)$$

$$=-\frac{88}{3}$$

$$\Rightarrow$$
 $(\alpha, \beta, \gamma) \equiv \left(-\frac{58}{3}, -\frac{43}{3}, -\frac{28}{3}\right)$

 \Rightarrow A,B,C are correct options

13. Consider the parabola $y^2 = 4x$. Let S be the focus of the parabola. A pair of tangents drawn to the parabola from the point P = (-2, 1) meet the parabola at P_1 and P_2 . Let Q_1 and Q_2 be points on the lines SP_1 and SP_2 respectively such that PQ_1 is perpendicular to SP_1 and PQ_2 is perpendicular to SP_2 . Then, which of the following is/are TRUE?

(A)
$$SQ_1 = 2$$

(B)
$$Q_1Q_2 = \frac{3\sqrt{10}}{5}$$

(C)
$$PQ_1 = 3$$

(D)
$$SQ_2 = 1$$

Ans. (B,C,D)

Sol. Let equation of tangent with slope 'm' be

$$T: y = mx + \frac{1}{m}$$

T: passes through (-2, 1) so

$$1 = -2m + \frac{1}{m}$$

$$\Rightarrow$$
 m = -1 or m = $\frac{1}{2}$

Points are given by
$$\left(\frac{a}{m^2}, \frac{2a}{m}\right)$$

So, one point will be (1, -2) & (4, 4)

Let
$$P_1(4, 4)$$
 & $P_2(1, -2)$

$$P_1S: 4x - 3y - 4 = 0$$

$$P_2S: x-1=0$$

$$PQ_1 = \left| \frac{4(-2) - 3(1) - 4}{5} \right| = 3$$

$$SP = \sqrt{10}$$
; $PQ_2 = 3$; $SQ_1 = 1 = SQ_2$

$$\frac{1}{2} \left(\frac{Q_1 Q_2}{2} \right) \times \sqrt{10} = \frac{1}{2} \times 3 \times 1 \quad \text{(comparing Areas)}$$

$$\Rightarrow Q_1 Q_2 = \frac{2 \times 3}{\sqrt{10}} = \frac{3\sqrt{10}}{5}$$

14. Let |M| denote the determinant of a square matrix M. Let $g: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ be the function defined by

$$g(\theta) = \sqrt{f(\theta) - 1} + \sqrt{f\left(\frac{\pi}{2} - \theta\right) - 1}$$

where

$$f(\theta) = \frac{1}{2} \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix} + \begin{vmatrix} \sin \pi & \cos \left(\theta + \frac{\pi}{4}\right) & \tan \left(\theta - \frac{\pi}{4}\right) \\ \sin \left(\theta - \frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log_e \left(\frac{4}{\pi}\right) \\ \cot \left(\theta + \frac{\pi}{4}\right) & \log_e \left(\frac{\pi}{4}\right) & \tan \pi \end{vmatrix}.$$

Let (x) be a quadratic polynomial whose roots are the maximum and minimum values of the function (θ) , and $(2) = 2 - \sqrt{2}$. Then, which of the following is/are TRUE?

(A)
$$p\left(\frac{3+\sqrt{2}}{4}\right) < 0$$

(B)
$$p\left(\frac{1+3\sqrt{2}}{4}\right) > 0$$

(C)
$$p\left(\frac{5\sqrt{2}-1}{4}\right) > 0$$

(D)
$$p\left(\frac{5-\sqrt{2}}{4}\right) < 0$$

Ans. (A,C)

Sol.
$$f(\theta) = \frac{1}{2} \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix} + \begin{vmatrix} \sin \pi & \cos \left(\theta + \frac{\pi}{4}\right) & \tan \left(\theta - \frac{\pi}{4}\right) \\ \cot \left(\theta + \frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log_e \left(\frac{4}{\pi}\right) \\ \cot \left(\theta + \frac{\pi}{4}\right) & \log_e \frac{\pi}{4} & \tan \pi \end{vmatrix}$$

$$f(\theta) = \frac{1}{2} \begin{vmatrix} 2 & \sin \theta & 1 \\ 0 & 1 & \sin \theta \\ 0 & -\sin \theta & 1 \end{vmatrix} + \begin{vmatrix} 0 & -\sin \left(\theta - \frac{\pi}{4}\right) & \tan \left(\theta - \frac{\pi}{4}\right) \\ \sin \left(\theta - \frac{\pi}{4}\right) & 0 & \log_e \left(\frac{4}{\pi}\right) \\ -\tan \left(\theta - \frac{\pi}{4}\right) & -\log_e \left(\frac{4}{\pi}\right) & 0 \end{vmatrix}$$

 $f(\theta) = (1 + \sin^2 \theta) + 0$ (skew symmetric)

$$g(\theta) = \sqrt{f(\theta) - 1} + \sqrt{f\left(\frac{\pi}{2} - \theta\right) - 1}$$

$$= |sin\theta| + |cos\theta| \qquad \qquad for \ \theta \in \left[0, \frac{\pi}{2}\right]$$

$$g(\theta) \in [1, \sqrt{2}]$$

Again let
$$P(x) = k(x - \sqrt{2})(x - 1)$$

$$2-\sqrt{2} = k(2-\sqrt{2})(2-1)$$

$$\Rightarrow$$
 k = 1 (P(2) = 2 - $\sqrt{2}$ given)

$$\therefore P(x) = (x - \sqrt{2})(x - 1)$$

for option (A)
$$P\left(\frac{3+\sqrt{2}}{4}\right) < 0$$
 correct

option (B)
$$P\left(\frac{1+3\sqrt{2}}{4}\right) < 0$$
 incorrect

option (C)
$$P\left(\frac{5\sqrt{2}-1}{4}\right) > 0$$
 correct

option (D)
$$P\left(\frac{5-\sqrt{2}}{4}\right) > 0$$
 incorrect

SECTION-3: (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has **TWO** lists: **List-I** and **List-II**.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : –1 In all other cases.

15. Consider the following lists:

List-I		List-II		
(I)	$\left\{ x \in \left[-\frac{2\pi}{3}, \frac{2\pi}{3} \right] : \cos x + \sin x = 1 \right\}$	(P)	has two elements	
(II)	$\left\{ x \in \left[-\frac{5\pi}{18}, \frac{5\pi}{18} \right] : \sqrt{3} \tan 3x = 1 \right\}$	(Q)	has three elements	
(III)	$\left\{ x \in \left[-\frac{6\pi}{5}, \frac{6\pi}{5} \right] : 2\cos(2x) = \sqrt{3} \right\}$	(R)	has four elements	
(IV)	$\left\{ x \in \left[-\frac{7\pi}{4}, \frac{7\pi}{4} \right] : \sin x - \cos x = 1 \right\}$	(S)	has five elements	
		(T)	has six elements	

The correct option is:

$$(A) (I) \rightarrow (P)$$
; $(II) \rightarrow (S)$; $(III) \rightarrow (P)$; $(IV) \rightarrow (S)$

(B) (I)
$$\rightarrow$$
 (P); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (R)

$$(C)$$
 $(I) \rightarrow (Q)$; $(II) \rightarrow (P)$; $(III) \rightarrow (T)$; $(IV) \rightarrow (S)$

(D) (I)
$$\rightarrow$$
 (Q); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (R)

Ans. (B)

Sol. (I)
$$\left\{ x \in \left[\frac{-2\pi}{3}, \frac{2\pi}{3} \right] : \cos x + \sin x = 1 \right\}$$

 $\cos x + \sin x = 1$
 $\Rightarrow \frac{1}{\sqrt{2}} \cos x + \frac{1}{\sqrt{2}} \sin x = \frac{1}{\sqrt{2}} \Rightarrow \cos \left(x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}$
 $\Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4} \; ; \; n \in \mathbb{Z} \quad \Rightarrow x = 2n\pi \; ; \; x = 2n\pi + \frac{\pi}{2} \; ; \; n \in \mathbb{Z}$
 $\Rightarrow x \in \left\{ 0, \frac{\pi}{2} \right\} \quad \text{in given range has two solutions}$

(II)
$$\left\{ x \in \left[\frac{-5\pi}{18}, \frac{5\pi}{18} \right] : \sqrt{3} \tan 3x = 1 \right\}$$

$$\sqrt{3} \tan 3x = 1 \implies \tan 3x = \frac{1}{\sqrt{3}} \implies 3x = n\pi + \frac{\pi}{6}$$

$$\Rightarrow x = (6n+1)\frac{\pi}{18}$$
; $n \in Z$

$$\Rightarrow x \in \left\{ \frac{\pi}{18}, \frac{-5\pi}{18} \right\}$$
 in given range has two solutions

(III)
$$\left\{ x \in \left[-\frac{6\pi}{5}, \frac{6\pi}{5} \right] : 2\cos(2x) = \sqrt{3} \right\}$$

$$2\cos 2x = \sqrt{3}$$

$$\Rightarrow \cos 2x = \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}$$

$$\Rightarrow 2x = 2n\pi \pm \frac{\pi}{6}$$
; $n \in Z$

$$\Rightarrow x = n\pi \pm \frac{\pi}{12}$$
; $n \in Z$

$$x \in \left\{ \pm \frac{\pi}{12}, \ \pi \pm \frac{\pi}{12}, -\pi \pm \frac{\pi}{12} \right\}$$

Six solutions in given range

(IV)
$$\left\{ x \in \left[-\frac{7\pi}{4}, \frac{7\pi}{4} \right] : \sin x - \cos x = 1 \right\}$$

$$\cos x - \sin x = -1$$

$$\Rightarrow \cos\left(x + \frac{\pi}{4}\right) = \frac{-1}{\sqrt{2}} = \cos\frac{3\pi}{4}$$

$$\Rightarrow x + \frac{\pi}{4} = 2n\pi \pm \frac{3\pi}{4}$$
; $n \in \mathbb{Z}$

$$\Rightarrow \ x = 2n\pi + \frac{\pi}{2} \ \ \text{or} \ \ x = 2n\pi - \pi \ ; \ n \in Z$$

$$\Rightarrow x \in \left\{\frac{\pi}{2}, \frac{-3\pi}{2}, \pi, -\pi\right\}$$
 four solutions in given range

16. Two players, P_1 and P_2 , play a game against each other. In every round of the game, each player rolls a fair die once, where the six faces of the die have six distinct numbers. Let x and y denote the readings on the die rolled by P_1 and P_2 , respectively. If x > y, then P_1 scores 5 points and P_2 scores 0 point. If x = y, then each player scores 2 points. If x < y, then P_1 scores 0 point and P_2 scores 5 points. Let X_i and Y_i be the total scores of P_1 and P_2 , respectively, after playing the ith round.

List-I			List-II		
(I)	Probability of $(X_2 \ge Y_2)$ is	(P)	$\frac{3}{8}$		
(II)	Probability of $(X_2 > Y_2)$ is	(Q)	11 16		
(III)	Probability of $(X_3 = Y_3)$ is	(R)	<u>5</u> 16		
(IV)	Probability of $(X_3 > Y_3)$ is	(S)	355 864		
		(T)	77 432		

The correct option is:

$$(A) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (T); (IV) \rightarrow (S)$$

$$(B)\:(I)\to (Q);\:(II)\to (R);\:(III)\to (T);\:(IV)\to (T)$$

$$(C)\:(I)\to (P);\:(II)\to (R);\:(III)\to (Q);\:(IV)\to (S)$$

(D) (I)
$$\rightarrow$$
 (P); (II) \rightarrow (R); (III) \rightarrow (Q); (IV) \rightarrow (T)

Ans. (A)

Sol. P(draw in 1 round) =
$$\frac{6}{36} = \frac{1}{6}$$

P(win in 1 round) =
$$\frac{1}{2} \left(1 - \frac{1}{6} \right) = \frac{5}{12}$$

$$P(loss in 1 round) = \frac{5}{12}$$

$$\begin{split} P(X_2 > Y_2) &= P(10,0) + P(7,2) = \frac{5}{12} \times \frac{5}{12} + \frac{5}{12} \times \frac{1}{6} \times 2 = \frac{45}{144} = \frac{5}{16} \\ P(X_2 = Y_2) &= P(5,5) + P(4,4) = \frac{5}{12} \times \frac{5}{12} \times 2 + \frac{1}{6} \times \frac{1}{6} = \frac{25 + 2}{72} = \frac{3}{8} \\ P(X_3 = Y_3) &= P(6,6) + P(7,7) = \frac{1}{6 \times 6 \times 6} + \frac{5}{12} \times \frac{1}{6} \times \frac{5}{12} \times 6 = \frac{2}{432} + \frac{75}{432} = \frac{77}{432} \\ P(X_3 > Y_3) &= \frac{1}{2} \left(1 - \frac{77}{432} \right) = \frac{355}{864} \end{split}$$

17. Let p, q, r be nonzero real numbers that are, respectively, the 10^{th} , 100^{th} and 1000^{th} terms of a harmonic progression. Consider the system of linear equations

$$x + y + z = 1$$

 $10x + 100y + 1000z = 0$
 $qr x + pr y + pq z = 0$.

List-I		List-II		
(I)	If $\frac{q}{r} = 10$, then the system of linear	(P)	$x = 0, y = \frac{10}{9}, z = -\frac{1}{9}$ as a solution	
	equations has		9 9	
(II)	If $\frac{p}{r} \neq 100$, then the system of linear	(Q)	$x = \frac{10}{9}$, $y = -\frac{1}{9}$, $z = 0$ as a solution	
	equations has			
(III)	If $\frac{p}{q} \neq 10$, then the system of linear	(R)	infinitely many solutions	
	equations has			
(IV)	If $\frac{p}{q} = 10$, then the system of linear	(S)	no solution	
	equations has			
		(T)	at least one solution	

The correct option is:

$$(A) (I) \rightarrow (T); (II) \rightarrow (R); (III) \rightarrow (S); (IV) \rightarrow (T)$$

$$(B)\:(I)\to(Q);\:(II)\to(S);\:(III)\to(S);\:(IV)\to(R)$$

$$(C) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (P); (IV) \rightarrow (R)$$

$$(D)\:(I)\to (T);\:(II)\to (S);\:(III)\to (P);\:(IV)\to (T)$$

Ans. (B)

Sol. If
$$\frac{q}{r} = 10 \Rightarrow A = D \Rightarrow D_x = D_y = D_z = 0$$

So, there are infinitely many solutions

Look of infinitely many solutions can be given as

$$x + y + z = 1$$

&
$$10x + 100y + 1000z = 0 \implies x + 10y + 100z = 0$$

Let
$$z = \lambda$$

then
$$x + y = 1 - \lambda$$

and
$$x + 10y = -100\lambda$$

$$\Rightarrow$$
 x = $\frac{10}{9}$ + 10 λ ; y = $\frac{-1}{9}$ - 11 λ

i.e.,
$$(x, y, z) \equiv \left(\frac{10}{9} + 10\lambda, \frac{-1}{9} - 11\lambda, \lambda\right)$$

$$Q\left(\frac{10}{9}, \frac{-1}{9}, 0\right)$$
 valid for $\lambda = 0$

$$P\left(0,\frac{10}{9},\frac{-1}{9}\right)$$
 not valid for any λ .

$$(I) \rightarrow Q,R,T$$

(II) If
$$\frac{p}{r} \neq 100$$
, then $D_y \neq 0$

So no solution

$$(II) \rightarrow (S)$$

(III) If
$$\frac{p}{q} \neq 10$$
, then $D_z \neq 0$ so, no solution

$$(III) \rightarrow (S)$$

(IV) If
$$\frac{p}{q} = 10 \Rightarrow D_z = 0 \Rightarrow D_x = D_y = 0$$

so infinitely many solution

$$(IV) \rightarrow Q,R,T$$

18. Consider the ellipse

$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
.

Let $(\alpha, 0)$, $0 < \alpha < 2$, be a point. A straight line drawn through H parallel to the y-axis crosses the ellipse and its auxiliary circle at points E and F respectively, in the first quadrant. The tangent to the ellipse at the point E intersects the positive x-axis at a point G. Suppose the straight line joining F and the origin makes an angle ϕ with the positive x-axis.

List-I		List-II		
(I)	If $\phi = \frac{\pi}{4}$, then the area of the triangle <i>FGH</i> is	(P)	$\frac{\left(\sqrt{3}-1\right)^4}{8}$	
	triangle <i>FGH</i> is		8	
(II)	If $\phi = \frac{\pi}{3}$, then the area of the triangle <i>FGH</i> is	(Q)	1	
	triangle <i>FGH</i> is			
(III)	If $\phi = \frac{\pi}{6}$, then the area of the	(R)	3 4	
	triangle <i>FGH</i> is			
(IV)	If $\phi = \frac{\pi}{12}$, then the area of the triangle <i>FGH</i> is	(S)	$\frac{1}{2\sqrt{3}}$	
	triangle <i>FGH</i> is			
		(T)	$\frac{3\sqrt{3}}{2}$	

The correct option is:

$$(A) (I) \rightarrow (R); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)$$

(B) (I)
$$\rightarrow$$
 (R); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)

$$(C)$$
 $(I) \rightarrow (Q)$; $(II) \rightarrow (T)$; $(III) \rightarrow (S)$; $(IV) \rightarrow (P)$

(D) (I)
$$\rightarrow$$
 (Q); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)

Ans. (C)

Sol. Let $F(2\cos\phi, 2\sin\phi)$

& E(2cos
$$\phi$$
, $\sqrt{3}$ sin ϕ)

EG:
$$\frac{x}{2}\cos\phi + \frac{y}{\sqrt{3}}\sin\phi = 1$$

$$\therefore G\left(\frac{2}{\cos\phi}, 0\right) \text{ and } \alpha = 2\cos\phi$$

$$ar(\Delta FGH) = \frac{1}{2} HG \times FH$$

$$= \frac{1}{2} \left(\frac{2}{\cos \phi} - 2 \cos \phi \right) \times 2 \sin \phi$$

$$f(\phi) = 2\tan\phi\sin^2\phi$$

$$\therefore \text{ (I) } f\left(\frac{\pi}{4}\right) = 1 \quad \text{ (II) } f\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{2} \quad \text{ (III) } f\left(\frac{\pi}{6}\right) = \frac{1}{2\sqrt{3}}$$

(IV)
$$f\left(\frac{\pi}{12}\right) = 2\left(2 - \sqrt{3}\right)\left(\frac{\sqrt{3} - 1}{2\sqrt{2}}\right)^2 = \left(4 - 2\sqrt{3}\right)\frac{\left(\sqrt{3} - 1\right)^2}{8} = \frac{\left(\sqrt{3} - 1\right)^4}{8}$$

$$\therefore$$
 (I) \rightarrow (Q); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)

